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Information content in the Nagel-Schreckenberg cellular automaton traffic model
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We estimate the set dimension and find bounds for the set entropy of a cellular automaton model for single
lane traffic. Set dimension and set entropy, which are measures of the information content per cell, are related
to the fractal nature of the automaton@S. Wolfram, Physica D10, 1 ~1989!; Theory and Application of Cellular
Automata, edited by S. Wolfram~World Scientific, Philadelphia, 1986!# and have practical implications for
data compression. For models with maximum speedvmax, the set dimension is approximately log(vmax12)2.5,
which is close to one bit per cell regardless of the maximum speed. For a typical maximum speed of five cells
per time step, the dimension is approximately 0.47.
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I. INTRODUCTION

In @1# Nagel and Schreckenberg describe a cellular
tomaton model for traffic flow that resembles traffic in re
life @2,3#. In particular, theTRANSIMS project@4# has adapted
this model to simulate traffic in entire cities. Recently,TRAN-

SIMS has focused on modeling the city of Portland, Oreg
but due to the size of Portland, this simulation generate
large amount of data~approximately one terabyte of sta
evolution information for a 24-hour simulation!, making data
compression a necessity. Understanding the possible allo
configurations of the automaton~i.e., the set entropy! fur-
thers the construction of efficient data compression schem

Claude Shannon introduced information theory as a w
to describe the information content in a given system@5#. Set
entropy measures the number of possible states occurrin
a cellular automaton; set dimension is the limit of the
entropy as the spatial extent approaches infinity@6,7#. To
measure this quantity for cellular automata, suppose there
N letters in our alphabet. Then for a cellular automaton
dimensionk ~the number of lanes on the roadway, in t
automaton considered here! and sizen ~the length of the
roadway!, there areNnk possible states for the cellular au
tomaton. LetukAnu be the number of states that may actua
occur in the automaton, given the rules constraining its e
lution in time. The set entropys(k,n) is given by

s~k,n!5
logNukAnu

nk
5

lnukAnu

ln Nnk

and the set dimensiond is given by

d5 lim
n→`

s~k,n!5 lim
n→`

logNukAnu
nk

5 lim
n→`

lnukAnu

ln Nnk
, ~1!
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refer to Refs.@5,6,8# for more details.
In this Brief Report, we construct bounds for the set e

tropy and estimate the set dimension for a single-la
roadway (k51) model@1,3,4#.

II. DESCRIPTION OF THE MODEL

In the single-lane model, the system is a grid ofn sites~or
cells!, c0c1•••cn21. Each cellci can either be empty, con
tain a stopped vehicle~with speed 0!, or contain a moving
vehicle with speedv. For a vehiclex, let cx be its position,
and vx be its velocity. This information is encoded in th
cellular automaton by the numbervx in cell cx . Let D ~the
‘‘gap’’ ! denote the amount of space between vehiclex and
the vehicle directly in front ofx. The following three rules
are used to determine the velocity of each car at the next t
step@1,3,4#.

Rule 1. Accelerate if you can: ifvx,D and vx,vmax,
thenvxªvx11.

Rule 2. Decelerate to avoid rear-end collisions: ifvx
.D, thenvx :5D.

Rule 3. Stochastic behavior: ifvx.0 and r ,pd , then
vx :5vx21.

In Rule 3, pd is the probability that a vehicle will slow
down for no reason, andr is a uniform random variable. The
rules can be modified to allow for individual cars to ha
different preferred speeds, but for our purposes a unive
maximum speedvmax and deceleration probabilitypd suffice.
To change states at a given time step, first determine
velocity of each vehiclex, then movex from cell cx to cell
cx1vx

. Thus, if the pair of cells labeled ‘‘5,0’’ occurs in th
automaton, the 5 and the 0 represent the speed of the
hicles based upon the previous state.

III. BOUNDS ON ENTROPY

Let An denote the set of one-lane blocks ofn cells that
may occur in an automaton. We refer to these asallowed
blocks. We are interested in computing the sizeuAnu of An for
any n. However, finding a closed form foruAnu proves to be
©2003 The American Physical Society03-1
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very difficult, even after discovering a successive listing
the blocks that can never occur in the automaton~see Ref.@8#
for the listing!. Thus, in order to compute the dimension, w
find upper and lower bounds foruAnu, which tend to similar
limits asn→`. ~The difference between the limits turns o
to be approximately 0.13.! Other work on allowed states i
traffic models has been performed by Schadschneider
Schreckenberg@9#, who identify the ‘‘garden of Eden’’ state
for the casesvmax51 andvmax52.

We begin by making two observations about the drivi
rules. First, suppose at timet there is a moving car with
speedv in cell ci . This implies that at timet21 the vehicle
was in cellci 2v . In order for the vehicle to move at speedv,
the cellsci 2v ,ci 2v11 , . . . ,ci 21 must have been empty. Fu
thermore, these cells must remain empty at timet, because
any vehicle behind the car will never move forward mo
cells than the gap between the two cars at timet21. For the
second observation we again suppose at timet there is a car
x with speedvx in cell ci , but now we suppose that there
a cary in cell ci 11 with speedvy . We claim thatvy50. This
follows because speedvx<D. Thus, vehiclex can move no
further than the cell behind vehicley at timet21. If vehicle
y were moving there would be a gap between vehiclesx and
y at time t21.

SupposeB5c0c1¯cn21 is an allowed block of sizen.
Our upper and lower bounds are based on the above ob
vations illustrated for blockB below.

~i! If there is a car in cellcm , 0<m,n21, then cell
cm11 is either empty or contains a vehicle with speed 0.
any case, there are only two choices for cellcm11, provided
there is a car in cellcm .

~ii ! If there is a car in cellcm with speedv, then all cells
cm21 ,cm22 , . . . ,cm2v must be empty.

We wish to find an upper and lower bound foruAn11u in
terms of uAnu. Let An(s) be the set of allowed blocks o
lengthn11 that end with an empty cell. Similarly, letAn(s)
be the set of blocks of lengthn11 where the last cell con
tains a vehicle with speeds. We first note that

An115An~s ! ø
s50

vmax

An~s!,

which yields

uAn11u5uAn~s !u1 (
s50

vmax

uAn~s!u.

Since an empty cell may be preceded by an empty ce
a vehicle of any speed,uAn(s)u5uAnu. Similarly, a vehicle
of speed 0 may also be preceded by an empty cell o
vehicle of any speed; hence,uAn(0)u5uAnu.

Let us now consider an allowed block of lengthn11,
which has a 1 incell cn ~recall our blocks begin with cel
c0). Cell cn21 must be empty, but cellcn22 may be empty or
contain a car of any speed. Thus,uAn(1)u5uAn21u.

Turning to An(2), we consider the allowed blocks o
length n11 where cellcn contains a 2. In this case bot
cells cn21 andcn22 must be empty. Cellscn23 is permitted
04710
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to be either empty or contain a vehicle with speed grea
than 0. A car of speed 0 in cellcn23 is a violation of obser-
vation 1, as the state ‘‘0,s,s,2’’ can only arise from forbid-
den states ‘‘0,2’’ or ‘‘0,1’’ in the previous time step~see Refs.
@8# and @9#!. Thus,uAn(2)u5uAn22u2uAn23u.

For An(s) with s.2, the computation is much more com
plicated. However, we note that cellscn21 , . . . ,cn2s all
must be empty. As with thes52 case, cellcn2s21 cannot
contain a stopped vehicle. With speeds.2 there are more
restrictions, but we will just note that in this caseuAn(s)u
<uAn2su2uAn2s21u.

Let us first use the following simple lower bound:

uAn11u>uAn~s !u1(
s50

2

uAn~s!u5uAnu1uAnu1uAn21u

1~ uAn22u2uAn23u!,

but we can simplify this further for easier computation if w
underestimateuAn(2)u by considering only those blocks wit
cells cn21 ,cn22, and cellcn23 empty. This givesuAn(2)u
>uAn23u, so we now have

uAn11u>Ln[2uAnu1uAn21u1uAn23u for n>4. ~2!

We now turn to the upper bound, using the above inf
mation:

uAn11u5uAn~s !u1 (
s50

vmax

uAn~s!u<uAnu1uAnu1uAn21u

1~ uAn22u2uAn23u!1~ uAn23u2uAn24u!1•••

1~ uAn2vmax
u2uAn2vmax21u!52uAnu1uAn21u

1uAn22u2uAn2vmax21u<2uAnu1uAn21u1uAn22u.

This gives us an equation for the upper bound:

uAn11u<Un[2uAnu1uAn21u1uAn22u for n>4. ~3!

To begin our entropy estimation, we first bounduAn11u by
simplifying the bounds in Eqs.~2! and ~3!:

2uAnu,uAn11u,4uAnu for n>4. ~4!

We would now like to combine Eqs.~3! and ~4! to get a
better upper bound foruAn11u of the formruAnu. ~Bounds of
the formruAnu are important because they allow the calc
lation of entropy in the limitn→`.! First notice that Eq.~4!
implies thatuAnu, 1

2 uAn11u, for all n. We now compute

uAn11u<2uAnu1uAn21u1uAn22u<2uAnu1 1
2 uAnu1 1

2 uAn21u

< 5
2 uAnu1 1

4 uAnu5 11
4 uAnu.

So we could now use4
11 uAn11u,uAnu, instead of 1

4 uAn11u
,uAnu, to get a better lower bound foruAn11u. In fact, we
can recursively improve lower and upper bounds of the fo
am

21uAnu,uAn11u,bm
21uAnu, where am and bm are succes-

sive improvements on the bounds. We start with Eq.~4!,
3-2
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which yieldsa15 1
2 and b15 1

4 . From Eqs.~2! and ~3!, re-
spectively, we obtain the recursion relations

am115~21bm1bm
3 !21,

bm115~21am1am
2 !21.

We are interested ina5 lim
m→`

am and b5 lim
m→`

bm . As

am andbm are both monotonic and bounded, botha andb
exist. We hope of course thata5b, because in this case th
upper and lower bound coincide. We are reduced to solv
the following two equations in two unknowns:

a5~21b1b3!21,

b5~21a1a2!21,

which can be solved numerically to obtain the following e
timates: a80.408 704 and b80.388 237, yielding g
[a2182.446 76 andd[b2182.575 74. Thus, we have ob
tained the simple bounds

Ln* [guAnu,uAn11u,Un* [duAnu for n>4. ~5!

Table I compares our bounds onuAnu with an exact enumera
tion of the allowed cellular automaton states and with
states observed in a computer simulation of the cellular
tomaton.

IV. DIMENSION

With a maximum speed ofvmax, there areN5vmax12
possible symbols for each cell in the Nagel-Schreckenb
traffic model. Thus, the set dimension is given by Eq.~1!:

d5 lim
n→`

log(vmax12)uAnu

n
.

TABLE I. Comparison of the exact value ofuAnu with the lower
boundLn , the upper boundUn , the scalable boundsLn* andUn* ,
and the statesSn observed in a computer simulation; herevmax

55.

n uAnu Ln Un Ln* Un* uSnu

1 7 7
2 19 19
3 49 49
4 126 126
5 320 308 320 309 324 320
6 811 785 815 783 824 811
7 2 045 1 991 2 068 1 985 2 088 2 04
8 5 145 5 027 5 221 5 004 5 267 5 14
9 12 930 12 655 13 146 12 589 13 252 12 92

10 32 474 31 816 33 050 31 637 33 304 32 42
11 81 529 79 923 83 023 79 456 83 644 80 81
12 204 651 200 677 208 462 199 482 209 997 200 4
13 >513 583 503 761 523 305 500 732 527 128 490 7
04710
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For the upper bound we have

uAnu,duAn21u5d2uAn22u5•••5d (n21)uA1u

5dn21~vmax12!,

so

d, lim
n→`

ln@dn21~vmax12!#

n ln~vmax12!

5 lim
n→`

F ~n21!ln d

n ln~vmax12!
1

ln~vmax12!

n ln~vmax12!G
5

ln d

ln~vmax12!
.

The lower bound is computed similarly to obtain

ln g

ln~vmax12!
,d.

Numerically, we now have

ln 2.446 76

ln~vmax12!
,d,

ln 2.575 74

ln~vmax12!

or

d'
ln 2.5

ln~vmax12!
.

Entropy, in general, is a measure of the ‘‘information co
tent’’ per site@5,6#. In this case, forn sufficiently large, setA
of allowed blocks is estimated byA'(Nn)d. In terms of bits,
B[ log2A5dn log2N for n sites. LetI represent the informa
tion content in terms of bits per cell. Computing this, w
obtain

I 5
log2A

n
'd log2N'

ln 2.5

ln N
log2N5 log22.581.32.

Thus, little more than one bit is needed to encode the in
mation contained in a single cell.

V. CONCLUDING REMARKS

We have bounded the set entropy and estimated the
dimension for the cellular automaton used in the Nag
Schreckenberg model for the single-lane roads.

In the multilane case, symmetric lane-changing mod
@4,10# are prevalent. Before changing lanes, a vehicle ty
cally must examine both the gap ahead and the gap behin
the other lane to avoid collisions. In such models, the la
changing rules do not limit the states reachable by the
namics, i.e., if the vehicles on a particular segment of ro
way have no preference for changing lanes at a given ti
then their dynamics at that time does not depend on
configuration of vehicles in other lanes, and any of the sta
of single-lane traffic is possible. Depending on the ex
form of the lane-changing rules, however, more states t
3-3



A
in
ul
or
d
in
i-
fo

en
f
he

ode
se
ey
par-
be
uch

n-

BRIEF REPORTS PHYSICAL REVIEW E67, 047103 ~2003!
just the product of single-lane states may be possible.
example of this is when a vehicle changes lanes to move
a gap between two vehicles where a vehicle normally wo
not be present. Thus,uLnuk can be used as a lower bound f
the multilane case, but an upper bound for it cannot be
rived from Un . The number of possible multilane states
excess ofuUnuk is relatively small, so our single-lane est
mate of the dimensions provides a rough approximation
the multilane dimension.

To obtain optimal results in data compression, other
tropies are interesting. These involve the probability o
given state occurring instead of just the possibility of t
. E

04710
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state occurring as in set entropy. This allows one to enc
the most likely states with the fewest number of bits. The
probabilities are very difficult to compute however, as th
are extremely dependent on the traffic density and the
ticular city street network. In some cases, however, it may
possible to analyze these probabilities using techniques s
as Markov chains.
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